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ABSTRACT

Schroedinger's equation for a spherically symmetrical potential with

central well surrounded by a barrier is studied in the tunneling range of

energies, where it possesses states of very long life and correspondingly

large, resonant response. The analysis is based on asymptotics with respect

to the long life and large response, related to asymptotics of exponential

precision, and leads to simple predictions for life and response.
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SIGNIFICANCE AND EXPLANATION

For quantum scattering in a potential with central well surrounded by a
barrier, bound states are well-known to be possible at low energies, but not
to exist in the tunneling range of energies. Careful spectroscopy, however,
has revealed some of the sharpest, apparent resonances just in the tunneling
range, and this has attracted interest in quantum chemistry because it
suggests a possibility of chemical reactions, even at quite significant rates,
the very existence of which quantum mechanics has completely discounted.
Those observations have therefore raised a question whether an understanding
of such phenomena could open up a new field of non-standard chemistry with
major practical implications, if effective ways of generating such novel
reactions could be predicted.

The study here reported focuses on the simple case of two-body scattering
because it already exhibits the salient features of the phenomenon and the
theoretical and practical difficulties characteristic of it. It also focuses
directly on those quasiresonances which are likely to have practical
significance on account of a large response to radiation excitation. Huge
response is indeed found to be possible for quite common types of potentials,
but the response is extremely frequency-sensitive, and its observation and
exploitation therefore depends on an extraordinary measure of frequency
control. This same feature raises great obstacles to theoretical approaches
by direct computation and by many familiar analytical methods, but recent
results on exponential-precision asymptotics are used in the present
investigation to obtain rigorous, and quite simple, predictions of those
quasiresonant frequencies, frequency-tolerances and response levels which are
aesociated with high radiation excitation.

Apart from the intriguing vistas for practical chemistry, the phenomenon
is also of deeper scientific interest because it necessitates rather radical
departures from conventional quantum mechanics. The operators of
quasiresonance are not self-adjoint and their study therefore requires new
points of view. The present analysis may help, in particular, to illuminate
the transtition from essentially self-adjoint to frankly non-selfadjoint
quantum mechanics.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.
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QUASIRESONANCE OF LONG LIFE

R. E. Mey

1. Introduction

In central scattering with potential barrier, bound states cannot exist

in the tunneling range of energy, but spectroscopy shows that some of the

sharpest resonances can, nevertheless, arise in just that range. They are due

to inward tunneling, which is a highly effective mechanism for the excitation

of quasi-stationary states that, without such radiative input, would decay

slowly. Indeed, the decay time or "life" of the wave functions in the absence

of excitation, is a measure of the resonant response, whence the main physical

interest centers, and the following focuses, on those of very long life.

They arise from elgenstates of complex, but near-real energy, and the

height and width of the spectral peak observable are, respectively, roughly

inversely and directly proportional to the imaginary part of the eigenvalue,

so that wave functions are really needed only in an abstract sense. The

search for such eigenvalues of long life, on the other hand, is clearly an

asymptotic undertaking with respect to the life as large parameter.

Our approach is therefore different from, and complementary to, the

rotation method of Balslev, Combes and Simon1 and it leads to simple, explicit

formulae for the life and response and to an enhanced understanding of the

features of the potential which promote long life. The key feature will

emerge to be the occurrence of wavelengths of imaginary part small compared

with the barrier width at the energy level in question, and this gives a

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. The
work was supported partially by the National Science Foundation under Grant
No. MCS-8001960.
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natural prominence to quasiclassical notions. They fail at some junctures,

however, and to avoid such pitfalls, the analysis is conducted along rigorous

lines.

It focuses on two-body scattering both because this illuminates the

meaning of quasiresonance most clearly and because it already raises a main

difficulty: eigenvalues then exist of imaginary part so painfully small that

asymptotics of exponential precision is needed to pinpoint them. Fortunately,

it can benefit from results on precision scattering obtained at the hand of an

2oceanographical problem . They are explained in Section 4, after the scope of

the investigation is outlined and the eigenvalue problem, formulated

(Sections 2, 3).

Since the eigenstates of interest are quasi-stationary, they are not
3

(pp. 33-34, 134) in the customary Hilbert spaces, indeed, the wave functions

grow exponentially in the far field (Section 4). The nature of the quantum

process is then simplified and illuminated by admission that the operator in

non-selfadjoint. The objective of the following, moreover, is not a

qualitative description of the whole spectrum, but a quantitative prediction

of those eigenvalues which are of practical interest because they have a long

life and can be sharply excited. The customary space-and-operator language

therefore loses some of its usefulness and a more elementary language3 will

serve better. Since precision of quantitative approximation becomes important

in quasiresonance, on the other hand, it is difficult to avoid intrusion of

some asymptotic terminology2'8 in Sections 4-6.

Significant differences in analysis and results arise from the influence

of the angular momentum, and the analysis of central reflection is first set

out (Section 5) for the case of very large angular momentum, where it is

quasiclassical. For relatively small angular momentum (Section 6), the

-2-
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singularity of the potential (assumed of Coulomb type, for simplicity)

dominates the central reflection process and requires recourse to concepts of

uniform approximation.

The determination of the eigenvalues of long life in Section 7 is followed

by a discussion of the results and some of their limitations (Section 8).

-3-
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2. Formulation

In central scattering according to Schroedinger's equation,

2
2V2V + [E - U(r)]Y = 0

for a wave function T exp(-iEt/h) in a spherically symmetric potential

U(r), it is traditional3 to split off the angular momentum by the help of

spherical harmonics Y m so that T = r-1 *(r)Y m and *(r) satisfies a

radial Schroedinger equation,

12 d2* + [E - U lr)]* = 0, U, = U(r) + 2(L+I)
2m drU2  2mr2

The following concerns potentials of the type indicated in Fig. 1: smooth,

with precisely one maximum (say, U = Urm at r = rm), tending as r + - to a

limit < Urm (which will be taken as U 0) and with a central singularity of

Coulomb type,
4

rU(r) + -U* < 0 as r + 0 . (1)

Such barrier potentials possess an inherent, non-dimensional wavenumber

scale

k = (2mU )/2r /? (2)

and if the well radius rm, barrier height Um, and ?i/U m be chosen as the

respective units of length, energy and time, the Schroedinger equation takes

the nondimensional form

2 2
+ k (E - U)(r) 0, U Ur) + (1 + 1)/(kr) 2

. (3)

Attention will be restricted to angular momenta for which

21(t + 1)/k 2 < max(r 3dU/dr) so that U (r) also possesses a well, and to

positive energies below the maximum potential, 0 < E < 1.

-4-
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Under such circumstances, the tunneling effect is well known to preclude

bound states and to imply time-decay for the wave functions (so that the

energy range envisaged is really, not 0 < E < 1, but 0 < Re E < 1).

Spectroscopic evidence indicates, however, that such potentials may be

associated with states of long "life"

T - -%/(Im E) . (4)

which are of primary physical interest because5 they possess a sharply

"quasiresonant" character. Their study, on which the present investigation

focuses, must of necessity involve the asymptotic notion T + -. The

question, of course, is how that notion relates to a given potential, and one

objective of the following is to show that it is largely interpretable in

terms of the notion k + w.

This is plausible, since excitation by tunneling is more effective with

wider barriers, and "wide" can have an intrinsic interpretation only in terms

of wavelengths. The plausibility stops a little short, however, when it is

recalled that there are no waves in a barrier and that the formal scale k is

not likely to be representative of the wavenumbers in all important parts of

the field. All the same, (2) is a natural, large scale associated with the

problem and the cautionary implication is mainly that uniform applicability of

the quasiclassical approximation is not thereby assured.

Since the time-decay resulting from tunneling must be associated with

complex values of the energy, the roots of E - U (r) or E - U(r), which

are the turning points marking the boundary of the potential barrier, must

also be complex. Their central importance4 to the character of the

Schroedinger equation (3) makes it logical not to ignore them and hence, to

give consideration also to complex values of the radius. The key point

-6-
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emerging from this is that a rational and direct theory of quasiresonance of

long life must necessarily involve an analysis in two complex variables, E

ane r, in addition to asymptotics with respect to a real parameter such as

T or k.

To implement this, the potential U(r) needs extension into the complex

plane of r, and the simplest expedient is to envisage an analytic

potential. Of two grounds on which that appears justified, one is that the

observational evidence is unlikely to distinguish between a smooth potential

in C and a sufficiently close, analytic approximation to it. The other is

that related work on adiabatic invariance6'7 indicates approximation by

analytic functions to furnish the most effective approach to a theory of

precision-scattering for general potentials in C . In short, the analytic

case is central, and also the most illuminating case.

On the other hand, the complex extension needed is notably economical:

U(r) will be assumed analytic on a neighborhood of (0,-) , however narrow,

beyond which it is left undefined. A sectorial character of the domain will

not be required.

-7-



3. Eigenvalue Problem

The analysis of quasi-stationary states is best related to certain wave

functions of clear-cut physical character. Fig. 2 shows the structure of the

complex r-plane. For real energy in the tunneling range, E - U (r) in (3)

has three real roots r0 , rl, and r2, and for decaying states of long life,

those roots remain close to the real r-axis, by (4). The figure also shows

the "Stokes lines" of (3) on which

r ],.

Re f [U,(r') - E]Vdr' = 0, s 0, 1 or 2
r

s

and of which three issue from each of the simple roots rs. Their relevance

stems from the theorem8 that to each Stokes line Li corresponds a

fundamental solution pair ui(r), vi(r) of (3) which have on Li the

character of progressive waves, undamped and un-amplified with distance from

rs . To fix the ideas, ui will denote the wave outgoing from r. along

Li and vi, the wave incident towards rs. Both are exact solutions of (3)

on the whole domain of U(r), but they do not possess the undamped,

progressive character on Lj for j * i.

The fundamental pairs of physical interest are u0, v0  and u., v., the

respective progressive waves on the central Stokes line L0  and the far-field

Stokes line L (Fig. 2), because these lines coincide, for real energy, with

segments (r0, r1 ) and (r2, -) of the real r-axis, where then

E - U (r) > 0. For long life (4), they depart only little from the real axis

and the simple character of the respective fundamental pairs on Lo and L

remains symptomatic of the main features of their more complicated character

on the real-axis segments nearby (Section 4). This indicates the correct

formulation of the radiation condition of quasi-stationary states 3 (p. 134)

-8-



Figure 2. Turning points and Stokes lines in the complex plane
of the radius r.
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that the wave function represent an outgoing wave in the far field: the

representation

(r) = A" u(r) + B v (r) (5)

of the (reduced) wave function as a linear combination of u, v must

satisfy

B =0, A G 0 . (6)

As a result of this radiation condition, the wave functions cannot be

relied upon3 (pp. 33-34, 134) to be square-integrable in the far field

(Section 4) (and the language of Hilbert space loses some of its customary

usefulness). The reflection process in the inner well (Fig. 1), however, is

subject to the less global condition 3 (p. 103) that the total probability

within the well-region be finite, so that *(r) e L2 (0, rm). The wave- effect

of this regularity condition is best described in terms of the central

representation,

*(r) = A0u0 (r) + B0 v0 (r) (7)

in which this condition will determine (Sections 5, 6) the ratio

A =/B0 = R (8)

natually interpretable as the (amplitude) reflection coefficient at the inner

barrier set up by the 'centrifugal' effect of the angular momentum in (3).

Since the fundamental pairs are exact solutions of (3) in the whole

domain of U(r), they must be linearily related,

*0(] = M [ J~

* 0(r L v ,(r )

with constant matrix M. Since (5) and (7) represent the same wave function

*(r), it follows that the amplitude coefficients are also linearily related,

-10-
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with a "scattering matrix" SIE, k) = ((Sij)). The exact eigen-condition for

quasi-stationary states can therefore be written as

0= B/B 0 = $22 + S2 1A0 /B0

- 22 + S2 1 R . (9)

The relevance of this quasi-stationary eigenvalue problem may be

illuminated further by the question: what stationary states could occur in the

laboratory, which operates at real E and r ? The fundamental pairs u0 ,

v0  and u , v. then describe pure progressive waves, and as a solution of

(3), the reduced wave function W r) of a stationary state must again be a

linear combination,

W =r) A0 u0 r + B0 v0 (r) = A u.(r) + B v.(r)

If the wave pairs are normalized appropriately, JA.1 2- and lB.1 2 represent
1 1

3the outward and inward probability-flux densities , respectively. To set up

such a stationary state, the radiation damping due to outward tunneling must

be compensated by incident radiation from 'infinity', so that B * 0.

Comparison of the fluxes JB:j2 and 1B01
2 will then yield a measure

lp(E,k)l
2 = IB*/Bi

2

of the probability level in the well for unit intensity of incident radiation

in the far field. It is a standard measure of the response to excitation

(even if only a conservative upper bound, because it presumes long action of a

spherically symmetrical, incident radiation).

Since the wave pairs are related by the matrix M, the starred amplitudes

must again be related by the scattering matrix S(E,k), and by (9), the

amplitude amplification
* *--

p(E, k) = B0/B = (S + S R) •

022 21
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For most real E, IpI is quite small (Section 7), but exceptions arise near
i-1

any near-real roots En of (9), where jpI 4 IE - En I

Quasi-stationary eigenvalues En of long life therefore predict strong,

narrow spectral lines of quasiresonance.

The search for those eigenvalues, on the other hand, is seen from (9) to

involve, not the question of approximation of wave functions, but the

'connection'-question how fundamental wave pairs are related to each other.

The only way that Schroedinger's equation enters into the quasiresonance

problem is through the three coefficients in (9), and the concern of the

following must be with adequate approximation of their dependence on E and

U(r) when k is large. This is of necessity a somewhat technical matter,

and the Reader may wish to skip the next three Sections to find out first what

their content is needed for and why adequacy of approximation turns out to

make such severe demands.

-12-



4. Precision scattering

The computation of the asymptotic expansions of scattering coefficients

in powers of k-  is precisely the objective of turning-point connection

theory8'9 and its application leads to

Y0S2 1  i + i c (E) k s

(10)

Y 0 s 2 2  exp[-2k 0 (E)] 11 + I d (E) k- '}
I

as k + - , where C0 denotes a familiar WKB wave-distance specified in (13)

below and the common factor y0 * 0 is irrelevant to the eigencondition (9).

However, not only are the cs and ds difficult to evaluate for s > 1, but

it will emerge that such a result fails to yield any information on the

life T.

Lozano and Meyer2 therefore recalculated S2 1 and S22 from the same

theory9 and showed that, if the question of computing the quantitative content

of the symbols be postponed, then these coefficients can be represented by

YOS21 i exp{i 1 (E,k)/k) - (1+i){1 + O(E,k)/k}e - 2 k (11)

=0S22 m e exp{i E2 (E,k)/kI (12)

where El. E2  represent the functions expanded in (10), 0 denotes a

similarly expandable function, and , a less familiar wave distance

specified in (14) below. The second term on the righthand side of (11) had

not been given before because Re CI > 0 so that this term is meaningless in

the standard, technical sense (10) of asymptotics. The coefficient

E - U (r) of (3), however, is clearly an analytic function of E and,

-13-
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according to the principle of conservation of probability3 , is real when E

and r are real. It follows2 that some of the wave solutions u,, 1i can be

defined with a complex-conjugate symmetry in the r- and E-planes, which is

inherited by some of their functionals. By reorganizing the long turning-

point connection calculations accordingly and tracing these properties of

analyticity and complex E-symmetry painstakingly through them, Lozano and

Meyer proved2 the following.

2Precision Scattering Theorem2 . The scattering coefficients S2 1 and

S2 2 in (9) can be represented exactly in the form (11), (12) with

=0 (Ek) f [F 0 (r)]/dr (13)
0 F = (r) - E

=(Ek) -f W) dr, (14)
rI

where the subscripts on F denote a consistent determination of branches of

the root, and with E.(E,k) analytic in E and real for real E, and

E. and W(E,k) bounded as k + •

As a corollary, the first term on the righthand side of (11) is seen to

be of exactly unit magnitude when E is real, so that the 'very small',

second term then describes the whole deviation of IYS 2 1 1 from unity,

regardless of any 'much larger' uncertainties about arg( YS 2 1 ) . One thrust

of the theorem is therefore that analyticity in E and the principle of

conservation of probability permit us to filter certain exponentially small

scattering contributions reliably out of the (algebraic) asymptotic expansions

(10). Since these contributions will turn out to determine the life T, the

-14-



standard, technical meaning of asymptotically larger and smaller is seen to be

somewhat misleading in regard to quasiresonance.

Such considerations reduce the importance of the asymptotic expansions

(10) for scattering and instead, direct attention to the WKB-integrals (13),

(14). A consistent scheme of branches has been described 2 in detail for an

equation analogous to (3). The main issue is that an analytic continuation of

the fundamental wave pairs must be established along a chain of overlapping

domains on each of which those functions have a coherent approximation. The

procedure of Lozano and Meyer2 was to construct such a chain below the turning

points rl, r2  in the r-plane (Fig. 2), and determinations of (13), (14)

consistent with the theorem were thus shown to be arg F0 
= I and

arg F1 
= 2W at real energy, with extension by continuity to slightly complex

energy. At real energy, therefore, k 0exp(-iw/2) > 0 and may be interpreted

in the familiar way as the width of the potential well of U at the level

Re E in units of local, radial wavelengths. Similarly, k1 > 0 at real

energy and -- if the potential barrier were not just the place where there are

no waves -- should be interpreted as the barrier width of U in such units.

The scattering analysis also provides a check on the radiation condition

(6). The WKB-approximation to u, is

r

u(r)- cF exp{kC (r), (r) = [F (s) ] 2 ds
r 2

where c denotes a normalization factor and F (r), the branch of the

function F in (13), (14) appropriate to the far field. The determination

consistent with those just mentioned is2 arg F = W on L , and as r +

along the real axis, where U (r) + 0, this gives 1. /2 r exp(iw/2). The

phase of the full, far-field wave function A r-Iu Am exp(-iEt) is therefore
I -t5-



Imlk, - itEt kr Re E 2.- t Re E

as r + - along the real axis, and this describes an outgoing wave for

Re E > 0, as it must be in the tunneling range. The radiation condition (6)

therefore implies the intended wave character in the far field even if L

should leave the domain. However,

Re {k.. - iEt} -t Im E - kr Im E/2

as r + - along the real axis and for positive life (as it will be seen in

Section 7 to be predicted by (9)) the wave function decays both at fixed

position and at fixed phase, but at fixed time, it grows with increasing r.

While this mathematical growth is exponential and precludes convergence of

I11D2 dr, the magnitude of k Im E 2 will emerge in Section 7 to be so small,

that the growth may be hard to observe at realistic distances.

-16-
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5. Reflection: large angular momentum

In the computation of the reflection coefficient (8), a distinction

between large and small angular momentum appears unavoidable and it is

convenient to begin with the case of quantum numbers L .o large that

2= t(9+1)/k 2

can be regarded as independent of k. Then U in (3) is independent of k

and only a more precise version of quasiclassical analysis4'1 0 is required.

When 2U2 < max (r 3dU/dr), U (r) still possesses a well and quasiresonance
reR

may occur at energies of real part between min U and max UP to which

attention will therefore be restricted. All three roots r0, rl, r2 of

F(r) = U (r) - E are now independent of k. The branches chosen for (13),

(14) are based on arg F0 (r0 ) = i for real E and are consistently extended

by arg(r - r0 } = -w for real r e (0, r0 ) (Fig. 2) to match the analytic

continuation of Section 4 passing below the turning points in the r-plane.

The domains of validity of simple asymptotic approximations to solutions of

(3) are restricted by conditions 1 1 that prevent the domain Do  containing the

Stokes line L0 (Fig. 2) from reaching points in (0, r0 ), where the

regularity condition can be plainly interpreted. To reach them, the domain

D_ of L_ (Fig. 2) is needed, which lies below r0  and overlaps with Do .

The branch F_ of F appropriate for L_ has arg F'(r 0) 3w for real

energy and the corresponding wave variables

=(r) r [F (t) 2dt on D
r0

1,l  t  °"° (15)

-r [F-(t)] 2 dt on D
0 r0 0

-11-



Y.,

are therefore related by
ii

t_(r) - 90 (r) e on D_ r D. , (16)

even at non-real energy. (The function t0 (Ek) of Sections 4, 7 is thus

seen to be &0 (r1 (E,k)) in the notation of Sections 5, 6.)

Langer's transformation8 of (3) near r0  is
2 3/2
I- C3/2, *(r) - (d/dr) 1/2w( )

and casts (3) into the form

d2W/dC2 _ (k2C + #_) W

with a function +_ satisfying the hypotheses of Olver'sa Theorem 9.1 (p.

417). Accordingly, (3) has a fundamental solution pair * r 6 with first

approximations r(r) -(d /dr)- 1/2 A M 2 / 3  0

* 8(r) - (dC/dr) /2ABi(k 2/3 0* (r) - (dr./dr)" '/2 Bi(k 2 / 3C) (17)

in terms of standard Airy functions Ai, Bi as k * w, uniformly for bounded

ICI- In (0, r0 ), argt_ is near zero for near-real energy 3nd the same

holds for arg C. Therefore, * (r) does not yield a wave function square-

integrable in the well and only multiples of * r(r) are admissible.

To translate this into information on the central reflection coefficient

R requires the representation of *r (r) in terms of the wave pair
u (r) -C 1/4 ek%(r) + 0(k 1

0 c0F0
I/ _k0 (r)(18)

v 0 (r) - C O0 4 e  [I + 0(k 1 ))

of L0  (Fig. 2). Since arg I = w on L0, that representation can be

obtained from the identity
8

-Ai(k2/ 3 ) - e-2Wi/3Ai(k2/3 C e2wi/3 ) + e-4wi/ 3 Ai(k 2 / 3 C e-4wi/3)

where the Airy functions on the righthand side then come to be taken at points

of argument t w/3 and their standard asymptotic approximation
8

-18-
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1 i2z-1/4 -2 z3/2 1 1 + O(z3/2)Ai(z) (IZ) exp- 3[ o"

can be used. This yields

-Ai[k2 ] 3 ' 1 W -1/2k 1/6 C1/4e'wi/2 le -[1 + 0(k-l)]

+ e'wi/2 ekg"[1 + 0(k-1)]}

and accordingly,

1 -1/2 k-1/6 F-1/4 lekEO(r)[1 + (k-,)]*r(r) -W k e Or[
r 2(19)

+ e ii/2 +k(r)[1 + 0(k'1

on L0 . Comparison with (7) and (18) now shows

-iw/2 -1
R A0 /B= e +O(kR 0

in (8).

This is the result of standard, quasiclassical4 '1 0 theory and is again

inadequate for information on the life T because its degree of accuracy

destroys the chance of using the new information of the Precision Scattering

Theorem in the eigencondition (9). Nor would the asymptotic expansion of R

help in that respect. By their appeal to conservation of probability,

however, Lozano and Meyer2 showed that u0, v0  can be normalized so that the

error terms in (18) are complex-conjugates of each other for real '. As a

wave function of (3), *r (r) is similarly normalizable to be real for real

E and r, and the error terms in (19) are therefore also complex-conjugates

when E is real. It now follows from the comparison of (7), (18) and (19)

that IR1 = 1 exactly for real E and furthermore, since the solutions of

(3) depend analytically on E, that

R e- iw/2 exp[ik-IZO(E,k)] (20)

with Z0  again analytic in E, bounded as k 9 -, and real for real E.

-1 9-
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6. Reflection: smaller angular momentum

As the angular momentum decreases, the turning point r0 moves closer to

the singular point r = 0 of the potential and quasi-classical analysis

begins to fail because more careful account must be taken4 of this central

singularity.

For small Ir01, the Langer transformation for (3) is
8 to variables

1 2 f r [ f o 0 t ) ] / 2 d t , W C ) = (d r. d r / 2 V r
0

where f0(r) is a branch of U(r) - E. The Schroedinger equation (3) then

takes the form8
2 k2  L(L+I )

d W/dC = + -+ ] W

where

-2dr12 -2] 1/2 d (d_.)1/2
o/= t/ + 1)[r C(I - 2 +d r

satisfies the hypothesis of Olver's8 Theorem 9.1 (p. 458). Accordingly, (3)

possesses a pair of exact solutions * r s with approximations in terms of

modified Bessel functions I, K,

*r - [C/(4f0)] 1/4 1I21+1(k I/'fl + O(k-2)]

1/ 1
+ (B0 g C /k)I 2 t+2 (k C /2)[i + 0(k 2 ]} (21)

(s /C4fo)] 1/4 {K 2 .t+,(k'1/ + o(C':/2kl)}j

as k + - for fixed 1, uniformly in a domain including the Stokes line LO

(Fig. 2), if

f 0(r) - e iIU(r) - El

(22)

- eiv U~r-[ 1 + (E - U)r/U. + Or2)] as r. 0,
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by (1). From the properties of the Bessel functions8 ,

k-21-1r- 1'1 and k21+1 rt

are seen to approach nonzero limits as r + 0 for large k and fixed 1.

For angular momentum L ) 1, *s thus fails to be square-integrable in

the well and cannot contribute to the wave functions. For I = 0, the

definition of reflection will here be complemented by the condition3 (p. 103)

V(O) = 0, and 4r is then also the only admissible solution of (3).
r

To obtain the exponential precision needed for information on the life

T, it will again suffice to combine the exact results quoted with a first

approximation to *r on a suitable segment of the Stokes line L0  (Fig. 2)

and to this end, a more precise version of Kramers' analysis 4 will be

adequate. For a simple and direct approach to reflection, attention may be

focused on a segment of Lo on which

Irol << Irl << U*/IE - U0 1

For fixed angular momentum 1, the root r0  of U - E is

=-+1) UO " E i(t+l) + 0(k-4)]k U U kU

by (3) and (22). In terms of %0(r) and of

n= C1/2 exp(-Wi/2),

the segment of Lo under consideration is therefore seen from (3), (15) and

(22) to be one on which

I[oI + 0 but kicI + -,

Ini + 0 but klnl + -,

and to cut the story short, it will be chosen so that kII 2  is bounded as

kIo * - From (21),
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(.k)-~'2 f 0/4e(t 3 / 4 )1 cos[krJ - (t + 3/4)w + o(ikrd' 1 )] (23)

on such a segment of L0 . From (22), in turn,

n- 2(U.r) '/2 [1 + O(lin 2 )1

and from (15),

&0 = 12r F0 2 [1 + o(Ck 2 r 2 F0 1 )] - i eih/2 [1(1+)]l/2 }[1 + o(IrI)]

(24)
= eiW/2{ k [(t+1 1 /2+ O(k 2 1 -)I[1 + 0 1

on such a segment, while f o / 4 = F01/4 [1 + 0ClkE01-2)] . Therefore, the

&0-wave representation of *r is there

-1/ -1/ -13 4 w -i/- _o L Ck 0 - ) (25)
*r (,k) ' 2F /4e(L+3/4)i cos[k~e-1i/2 0 e + o(Ik ) (5

with

[t(z + 1)1/2 (26)

and comparison with (8) and (18) shows

R = e- iW( 1/2 + 20) + o(Ik&0 1- 1 )

This result is again insufficient for any information on the life T,

but since the wave function *r is again normalizable to be real for real

E and R, it follows again that IR1 = 1 exactly for real E and therefore

R = e - i (' I/2+20) exp[ ik- 1/ 2 1.0(Ek' (27)

with still t0  analytic in E, bounded as k + - and real for real E.

When (27) is compared with (20), the angular-momentum correction to

reflection is seen to be4 massive for I = 0, but to decrease rapidly with

increasing I . In the limit discussed in Section 5, (27) approaches (20),

and it appears a fair conjecture that (27) holds for all angular momenta.

Proof would require filling a gap in the theory of Bessel functions8 , but the

-22-

..



plausibility of the conjecture is enhanced by noting that the root r0 of

U - E moves with increasing I close to the point where order and argument

of the Bessel function in (21) are equal, and for large order 2t + 1, that is

a turning point where the Bessel function has an Airy-representation
8

corresponding to that encountered in (17). A unified representation of the

wave function * r for all angular momenta might therefore exist, and it will

be seen in the next Section that it would yield a further clarification of the

quantization rules. In any case, since (26) gives 20 = 0.056 already for

I = 4, the difference, if any, between (26) and the exact angular-momentum

correction to the phase shift of reflection can be rarely significant.

Since a uniform approximation of * r up to the central singularity

r = 0 of the potential (which is not mapped on any 0) is obtainable only in

terms of C/2= in, this is the variable used in the mathematical theory
8

Besides, C 0 differs from n only by correction terms tending to zero in the

wave region as k + m, and mathematical usage favors simple variables

uncontaminated by correction terms. That can be shortsighted, for in terms of

n, the wave representation of *r is given already by (23), but the

corresponding reflection coefficient,

R = e-3vi/ 2 exp[ik- 1/2 E (E,k)]

is quite different from (20) and agrees with (27) only for L = 0. Its

correct use in the eigencondition requires proper account, after all, of the

difference between C0 and n in (18).
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7. Eigenvalues

When (11), (12) and (27) are substituted in the characteristic form

A(E,k) = $22 + S2 1R

of (9), it may be split rather naturally into

A(E,k) = i 0 R{A 0 (E,k) + A4(E.k))

A0 = exp[-2kE0 + 2wio + iE2/k - iE0/k 12] + exp(ir 1/k) (28)

A, (i - 1)(1 + Q/k) exp(-2kt I)

so that A0 collects all the functions whence asymptotic contributions to A

of algebraic type in k- I can be anticipated, while A can make only an

exponentially small contribution when Re 1 > 0. (In (28), to denotes

again the quantity (13), which is E0(r 1 ) in the notation of (15).]

To compute the near-real roots of A, it is convenient to begin with the

real roots Er of A0(E,k). Since &0(Ek) itE01 for real E, they are

given by

k"1(Erk)l + (E 2 + k 1/2 E0)/(2k) = (n + I + o)1 (29)

with large integer n > 0 below a cut-off nc* In dimensional notation, this

is

( 2 /m)  f IE U (r)I 1/ 2 dr = (n + 2 + a)w ht + O(k'3/2)]
0 (30)

UI(r 0 ) UI(r) - Er

where Um M maxret(r), UI is given by (2) and (3), and (r0,r1 ) is the

U.-well interval of the radius at the level Er. Apart from the angular-

momentum correction4  a, (30) is just the quasiclassical description of

energy levels ignoring the radiation damping. The new feature that it is an

exact version of the quantization rule is not of much direct use because an

algorithm for the evaluation of the Ei  is available8,9 only for an
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unrealistically restricted class of potentials. The feature of immediate

relevance is that, since U(r) is monotone increasing on (O,rm) (Fig. 1),

(30) is known to determine a unique, real Er (n) for large k and given

integer n such that still Er(n) < Um -

The quantization correction a is given by (26) for small angular

momentum t and to a good approximation, at least, also for larger t. For

I = 0, (30) therefore becomes an integer quantization rule, but as £ * -,

a + 0, and even for I = 1, a = 0.086 only. It may be remarked

incidentally that the results of Section 6 show that (30) may be rephrased for

small angular momentum in terms of the uncorrected potential UmU(r), and it

then becomes an integer quantization rule,

rI
1/23/

(2 mU m) 1/2 f JEr - U(r)I 1 2dr = (n + 1)T Ml( + 0(k-3 2 )]
0

U(rl) = Er - t(I + 1)/(krl )

To determine now the eigenvalues in the presence of radiation damping,

let a prime denote a/aE for functions of E and k and note from (13),

since F(r0 ) F(r,) = 0,

rI
&IEk [F -01/2 (F/Ed

02 0o2 (afO/0E)drr0

and in particular,

I iw/2 V
=Erpk e f ~ IE U t(r)I dr * 0 (31)

r0

Similarly, ;(E rk) exists, so that 0(E,k) and A1 (E,k) are analytic

in E on a neighborhood of E Er(n) and A'(Erk) * 0, by (29). For
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fixed k, accordingly, (29) defines a one-one map between near-disc

neighborhoods about the points E = Er(n) and k-1A0 = 0 in the respective

planes of E and k- 1 A0 , and since the k-dependence of &0(Ek) decreases

with increasing k, by (13) and (3), those discs approach k-independent sizes

as k + -. For sufficiently large k, therefore, the image of the map in the

plane of A0 covers any desired neighborhood of A0 = 0. In particular, if

N i denotes that neighborhood of E = Er(n) on which

1A01 < 2 exp[-2kE 1 (Erk)] only, then N1  is certain to be in the domain of

the map, to have a simple closed curve N I as boundary and to contain no

root of A0 other than E = Er(n). Since 1A 11 < JA0 1 on WNi, it follows

from the principle of the argument that N, contains precisely one root of

A0 (E,k) + A1 (E,k) and that this root, En' is simple.

A simple eigenvalue En close to Er(n) is thereby established for each

large enough integer n < nc, and to the first approximation as k +,

En - Er(n) -A1 (Erk)/A (Erk)

1 -1
- 2 (1 + i)[kI&(E ,k)I] exp[-2k& 1(Ek)]

The real part of this result has little practical meaning on account of the

difficulty of computing Er(n) from (29) with comparable accuracy. The

imaginary part, on the other hand, gives the rigorous, first approximation

to Im En as k + - and the corresponding eigenfunction life

Tn U i E .ku J(E(n),k)exp[2k&1 (Er(n),k)]
m n m

2(2m/U m) /2 I0Er(n),k)Iexp[(8mUM) 1/2 1 (Er(n),k)/b] (32)

with Er (n), & and C given by (30), (31) and (14).

The salient features of this result are that the life is exponentially

large in -1 and that its computation involves no more than the evaluation of

the two definite, WKB-integrals (31), (14), once the real part Er(n) of
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En  has been determined from the standard quantization rule (30). The latter

task, however, requires high accuracy for experimental comparisons because the

quasireeonance arises from the exponential closeness of the eigenvalue to the

real axis of the energy-plane and hence, the energy-band width of the

quasiresonance is an exponentially narrow one centered near Er(n).

To obtain the response p(E,k) - A(E,k)-  to excitation (Section 3) in

scattering at real energy requires consideration also of the factor Y. in

(11), (12), which is2 exp[-ktI(E,k)]t1 + O(k 1 )}. Thus 0It has an

exponentially large maximum

Wmtnax - exp[k I(E rl(nl'kl]

at each quasiresonant energy-level, but over nearly the whole interval between

successive such levels, the response is only of the exponentially small order

of its minimum,

1
1P'min Y0/maxIAO(Er k)t I exp[-k 9 (Erk)]

The energy-dependence of cross-sections therefore looks as if there were a

continuous spect'um with response of order pImi n at most energies in the

tunneling range, but with very sharp, 'quasiresonant' peaks of order pI max

near Br(n).
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8. Discussion

The main result of the analysis is rigorous confirmation of the plausible

conjecture that the essence of quasiresonance of long life is the existence of

energy eigenvalues of small imaginary part because of tunneling. The

quantization rule (30) and life-formula (32), moreover, give a simple,

quantitative prediction of such eigenvalues. They show the main requirement

for their occurrence to be the existence of energy levels at which the

potential barrier is wide compared with the 'local wavelength'.

A rough estimate of that wavelength is normally given by

k-1 =/E2mUmr] 1/2 ,

where I is the usual Planck constant, m is the reduced mass for the

elastic, two-particle scattering here studied, U is the height of the

potential-barrier top above the far-field potential level, and rm  is the

total radius of the potential well (Fig. 1). Barriers wide compared with

k-1  are therefore not uncommon, and a rough idea of the potential suffices

for predicting their presence.

When quasiresonance is important, moreover, it has been shown to have

distinctive features. The life and with it, also the response to radiation

excitation at the resonant energy level, is exponentially large in the wave

number scale k. The bandwidth of quasiresonant excitation, however, is

exponentially narrow because the long life arises from the proximity of an

eigenvalue to the real energy-axis. This intrinsic coupling of extremely

large response with extremely narrow bandwidth characteristic of important

quasiresonance has considerable practical implications. It would also create

difficulties for direct numerical attacks on the Schroedinger equation and

enhances the value of the simple predictions obtained here by long-life

asymptotics.
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A feature of the analysis which may be worth more explicit remark is that

it treats a distinctly non-selfadjoint problem of the Schroedinger equation,

since it concerns nonreal energy eigenvalues. This feature moves the

eigenfunctions out of the customary Hilbert spaces. I None the less, the

normal quantization rule of the self-adjoint case has been proven to remain

applicable because interest for quasiresonance centers on near-real

eigenvalues. It may be a good example of the fact that loss of self-

adjointness need not generate a discontinuous, quantitative change.

Some further comments on the scope and limitations of the present

analysis may also be appropriate. For small or moderate angular momentum, the

low-level bound states occur quite deep in the well because (30) shows large

quantum numbers n to correspond already to the lowest energy levels of the

tunneling range of energies. The present analysis then covers all eigenvalues

of long life because it begins to fail only at energy levels so close to the

potential-barrier top that the barrier width becomes small. This failure of

the analysis therefore only keeps step with shrinkage of the life to relative

unimportance.

For very large angular momentum, a failure of the present analysis can

occur at the lowest, quasiresonant energy levels. The well of the potential

U corrected for the 'centrifugal effect' is then relatively shallow and

even its bottom may lie in the tunneling range. Low-level quantum states

might then occur at levels where the barrier is wide, which would indicate

long life, but where the well is narrow. Shortwave analysis would accordingly

fail for the well, but would remain applicable to most of the barrier. It

then becomes relevant that the present analysis furnishes striking

confirmation that typical bound-state analysis can give close approximations

to the real parts of eigenvalues even in the tunneling range. This makes it
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appear likely that normal methods for the determination of low, bound levels

could be combined with shortwave analysis of the barrier, in such cases. If

approximations to A 0(Erk) and A (Er k) be thus obtained from low-level,

bound-state analysis or computation, then the results for A (E rk) of

Section 7 would be likely to give approximations to the life whenever

quasiresonance is important.

For angular momentum that is large, but not large enough to have a

quantum number I comparable to the wavenumber scale k, a modified,

quasiclassical analysis is needed, which has not been given, but has been

shown to be unlikely to modify the results materially.
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